skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Power transient analyses of experimental in-reflector devices during safety shutdown in Jules Horowitz Reactor (JHR)

Conference ·
OSTI ID:22105745
;  [1];  [2]; ; ;  [3]
  1. Univ. of Bologna (Italy)
  2. National Agency for New Technologies, Energy and Sustainable Economic Development ENEA (Italy)
  3. Atomic Energy Commission CEA (France)

The Jules Horowitz Reactor (JHR) is designed to be a 100 MW material testing reactor (MTR) and it is expected to become the reference facility in the framework of European nuclear research activity. As the core neutron spectrum is quite fast, several experimental devices concerning fuel studies have been conceived to be placed in the reflector in order to exploit a proper thermal neutron flux irradiation. Since the core power is relatively high, the neutronic coupling between the reactor core and the reflector devices has to be taken into account for different rod insertions. In fact the thermal power produced within the fuel samples is considerable. Heat removal during shutdown is a main topic in nuclear safety and it is worth to analyse thermal power transients in fuel samples as well. Here a thermal hydraulic model for JHR core is proposed aiming at a simple and representative description as far as reactivity feedbacks are concerned. Then it is coupled with a neutronic pointwise kinetics analysis by means of the DULCINEE code to compute core power transient calculations. Moreover, some reflector-core coupling evaluations are performed through Monte Carlo method using the TRIPOLI 4.7 code. The JHR equilibrium cycle is considered with respect to four fuel compositions namely Beginning of Cycle (BOC), Xenon Saturation Point (XSP), Middle of Cycle (MOC) and End of Cycle (EOC). Then thermal power transients in the experimental reflector devices are evaluated during safety shutdowns and they are verified for all these cycle steps. (authors)

Research Organization:
American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park, Illinois 60526 (United States)
OSTI ID:
22105745
Resource Relation:
Conference: PHYSOR 2012: Conference on Advances in Reactor Physics - Linking Research, Industry, and Education, Knoxville, TN (United States), 15-20 Apr 2012; Other Information: Country of input: France; 7 refs.
Country of Publication:
United States
Language:
English