skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Manganese nanoclusters and MnSi{sub {approx}1.7} nanowires formed on Si(110): A comparative x-ray photoelectron spectroscopy study

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4774098· OSTI ID:22102209
; ;  [1];  [1]
  1. Center for Analysis and Testing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

The growth of Mn on a Si(110) surface at room temperature (RT) and 550 Degree-Sign C has been investigated by scanning tunneling spectroscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observation shows that the growth at 550 Degree-Sign C results in the formation of nanowires (NWs), while that at RT produces only nanoclusters. The Mn 2p XPS spectra unambiguously reveal that the NWs are composed of MnSi{sub {approx}1.7} and the nanoclusters are composed of Mn. Curve-fitting analysis of the spectra shows that 64.9% of the NWs were oxidized due to atmospheric exposure during sample transfer, while the Mn nanoclusters were completely oxidized under the same conditions. This fact indicates that the MnSi{sub {approx}1.7} NWs have better oxidation resistance than the Mn clusters, which can be attributed to the protection effect of the SiO{sub 2} layer formed on the NWs and the smaller surface to volume ratio of the NWs comparing with the clusters. The binding energy of Mn 2p for the NWs exhibits a negative shift of {approx}0.5 eV with respect to the Mn metallic state, which is similar to the silicide state of earlier transition metals Ti and Cr, but different from that of later transition metals Fe and Ni. This negative shift can be attributed to the contribution of Madelung potential.

OSTI ID:
22102209
Journal Information:
Journal of Applied Physics, Vol. 113, Issue 2; Other Information: (c) 2013 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English