skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ laser processing in a scanning electron microscope

Journal Article · · Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
DOI:https://doi.org/10.1116/1.4731254· OSTI ID:22098900
; ; ; ; ;  [1]
  1. Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States)

Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

OSTI ID:
22098900
Journal Information:
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films, Vol. 30, Issue 4; Other Information: (c) 2012 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0734-2101
Country of Publication:
United States
Language:
English