skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dosimetric verification of the anisotropic analytical algorithm in lung equivalent heterogeneities with and without bone equivalent heterogeneities

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3464748· OSTI ID:22098519
; ; ; ;  [1]
  1. Department of Radiation Physics, Hiroshima Heiwa Clinic, 1-31 Kawaramachi, Naka-ku, Hiroshima 730-0856 (Japan)

Purpose: In this study, the authors evaluated the accuracy of dose calculations performed by the convolution/superposition based anisotropic analytical algorithm (AAA) in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Methods: Calculations of PDDs using the AAA and Monte Carlo simulations (MCNP4C) were compared to ionization chamber measurements with a heterogeneous phantom consisting of lung equivalent and bone equivalent materials. Both 6 and 10 MV photon beams of 4x4 and 10x10 cm{sup 2} field sizes were used for the simulations. Furthermore, changes of energy spectrum with depth for the heterogeneous phantom using MCNP were calculated. Results: The ionization chamber measurements and MCNP calculations in a lung equivalent phantom were in good agreement, having an average deviation of only 0.64{+-}0.45%. For both 6 and 10 MV beams, the average deviation was less than 2% for the 4x4 and 10x10 cm{sup 2} fields in the water-lung equivalent phantom and the 4x4 cm{sup 2} field in the water-lung-bone equivalent phantom. Maximum deviations for the 10x10 cm{sup 2} field in the lung equivalent phantom before and after the bone slab were 5.0% and 4.1%, respectively. The Monte Carlo simulation demonstrated an increase of the low-energy photon component in these regions, more for the 10x10 cm{sup 2} field compared to the 4x4 cm{sup 2} field. Conclusions: The low-energy photon by Monte Carlo simulation component increases sharply in larger fields when there is a significant presence of bone equivalent heterogeneities. This leads to great changes in the build-up and build-down at the interfaces of different density materials. The AAA calculation modeling of the effect is not deemed to be sufficiently accurate.

OSTI ID:
22098519
Journal Information:
Medical Physics, Vol. 37, Issue 8; Other Information: (c) 2010 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English