skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Time delay between photoemission from the 2p and 2s subshells of neon

Journal Article · · Physical Review. A
; ; ; ;  [1]
  1. Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom)

The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schroedinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2{+-}1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne{sup +} ion. A time delay of 14.5{+-}1.5 as was observed, compared to a 16.7{+-}1.5 as result using a single-configuration representation of the residual Ne{sup +} ion.

OSTI ID:
22095520
Journal Information:
Physical Review. A, Vol. 84, Issue 6; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English