skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of the prescription dose for biradionuclide permanent prostate brachytherapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.3002417· OSTI ID:22095277
;  [1]
  1. Laboratoire d'Analyses par Reactions Nucleaires, Physics Department, LARN Lab, University of Namur (FUNDP), Rue de Bruxelles, 61, B-5000 Namur (Belgium)

A model based on the linear quadratic model that has been corrected for repopulation, sublethal cell damage repair, and RBE effect has been used to determine the prescription dose for prostate permanent brachytherapy using seeds loaded with a mixture of {sup 103}Pd and {sup 125}I or a mixture of {sup 103}Pd and {sup 131}Cs. The prescription dose was determined by comparing the tumor cell survival fractions between the considered biradionuclide seed implant and one monoradionuclide seed implant chosen from {sup 103}Pd, {sup 125}I, and {sup 131}Cs. Prostate edema is included in the model. The influence of the value of the radiobiological parameters and RBE were also investigated. Two mixtures of radionuclides were considered: {sup 103}Pd{sub 0.75}-{sup 125}I{sub 0.25} and {sup 103}Pd{sub 0.25}-{sup 131}Cs{sub 0.75}, where the subscripts indicate the fractions of total initial internal activity in the biradionuclide seed. These fractions were selected in order to obtain a dose distribution that lies between that of {sup 103}Pd and {sup 125}I/{sup 131}Cs. As expected, the computed prescription dose values are dependent on the model parameters (edema half-life and magnitude, radiobiogical parameters, and RBE). The radionuclide used as a benchmark also has a strong impact on the derived prescribed dose. The large uncertainties in the radiobiological parameters and RBE values produce big errors in the computed prescribed dose. Averaged over the range of all the parameters and depending on the radionuclide used as a benchmark (in subscript), the derived prescription dose for the first mixture (PdI) would be: D{sub Pd}{sup PdI}=142{sub -16}{sup +15} Gy and D{sub I}{sup PdI}=142{sub -8}{sup +6} Gy; and D{sub Pd}{sup PdCs}=128{sub -13}{sup +13} Gy and D{sub Cs}{sup PdCs}=115{sub -7}{sup +6} Gy for the PdCs mixture. The uncertainties could be reduced if the radiobiological parameters and RBE value were known more accurately. However, as edema characteristics are patient dependent and can be obtained only after the treatment, an unpredictable error is unavoidable.

OSTI ID:
22095277
Journal Information:
Medical Physics, Vol. 35, Issue 12; Other Information: (c) 2008 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English