skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Haverford College, Department of Physics and Astronomy, 370 Lancaster Ave., Haverford, PA 19041 (United States)
  2. Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r {approx}> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies-even very compact galaxies-outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM <0.2 arcsec. We consider unsupervised spectral energy distribution template fitting and supervised, data-driven support vector machines (SVMs). For template fitting, we use a maximum likelihood (ML) method and a new hierarchical Bayesian (HB) method, which learns the prior distribution of template probabilities from the data. SVM requires training data to classify unknown sources; ML and HB do not. We consider (1) a best-case scenario (SVM{sub best}) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM{sub real}) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering {approx}80% completeness, with purity of {approx}60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM{sub best}, HB, ML, and SVM{sub real}. We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.

OSTI ID:
22086344
Journal Information:
Astrophysical Journal, Vol. 760, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English