skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A CONDITIONAL LUMINOSITY FUNCTION MODEL OF THE COSMIC FAR-INFRARED BACKGROUND ANISOTROPY POWER SPECTRUM

Journal Article · · Astrophysical Journal
;  [1]
  1. Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

The cosmic far-infrared background (CFIRB) is expected to be generated by faint, dusty star-forming galaxies during the peak epoch of galaxy formation. The anisotropy power spectrum of the CFIRB captures the spatial distribution of these galaxies in dark matter halos and the spatial distribution of dark matter halos in the large-scale structure. Existing halo models of CFIRB anisotropy power spectrum either are incomplete or lead to halo model parameters that are inconsistent with the galaxy distribution selected at other wavelengths. Here, we present a conditional luminosity function approach to describe the far-IR bright galaxies. We model the 250 {mu}m luminosity function and its evolution with redshift and model-fit the CFIRB power spectrum at 250 {mu}m measured by the Herschel Space Observatory. We introduce a redshift-dependent duty cycle parameter so that we are able to estimate the typical duration of the dusty star formation process in the dark matter halos as a function of redshifts. We find that the duty cycle of galaxies contributing to the far-IR background is 0.3-0.5 with a dusty star formation phase lasting for {approx}0.3-1.6 Gyr. This result confirms the general expectation that the far-IR background is dominated by star-forming galaxies in an extended phase, not bright starbursts that are driven by galaxy mergers and last {approx}10-100 Myr. The halo occupation number for satellite galaxies has a power-law slope that is close to unity over 0 < z < 4. We find that the minimum halo mass for dusty, star-forming galaxies with L {sub 250} > 10{sup 10} L {sub Sun} is 2 Multiplication-Sign 10{sup 11} M {sub Sun} and 3 Multiplication-Sign 10{sup 10} M {sub Sun} at z = 1 and 2, respectively. Integrating over the galaxy population with L {sub 250} > 10{sup 9} L {sub Sun }, we find that the cosmic density of dust residing in the dusty, star-forming galaxies is responsible for the background anisotropies {Omega}{sub dust} {approx} 3 Multiplication-Sign 10{sup -6} to 2 Multiplication-Sign 10{sup -5}, relative to the critical density of the universe.

OSTI ID:
22086343
Journal Information:
Astrophysical Journal, Vol. 760, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English