skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates

Abstract

We theoretically analyze a Mach-Zehnder interferometer with trapped condensates and find that it is surprisingly stable against the nonlinearity induced by interparticle interactions. The phase sensitivity, which we study for number-squeezed input states, can overcome the shot noise limit and be increased up to the Heisenberg limit provided that a Bayesian or maximum-likelihood phase estimation strategy is used. We finally demonstrate the robustness of the Mach-Zehnder interferometer in the presence of interactions against condensate oscillations and a realistic atom-counting error.

Authors:
 [1];  [1];  [2];  [3]
  1. Institut fuer Physik, Karl-Franzens-Universitaet Graz, 8010 Graz (Austria)
  2. Vienna Center for Quantum Science and Technology, Atominstitut, Technische Universitaet Wien, 1020 Vienna (Austria)
  3. INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, 38123 Povo (Italy)
Publication Date:
OSTI Identifier:
22075517
Resource Type:
Journal Article
Journal Name:
Physical Review. A
Additional Journal Information:
Journal Volume: 84; Journal Issue: 2; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 1050-2947
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; BOSE-EINSTEIN CONDENSATION; INTERACTIONS; INTERFEROMETRY; MACH-ZEHNDER INTERFEROMETER; MAXIMUM-LIKELIHOOD FIT; NONLINEAR PROBLEMS; OSCILLATIONS; SENSITIVITY; TRAPPING

Citation Formats

Grond, Julian, Wolfgang Pauli Institut c/o Fakultaet fuer Mathematik, Universitaet Wien, 1090 Vienna, Vienna Center for Quantum Science and Technology, Atominstitut, Technische Universitaet Wien, 1020 Vienna, Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, 69120 Heidelberg, Hohenester, Ulrich, Schmiedmayer, Joerg, and Smerzi, Augusto. Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates. United States: N. p., 2011. Web. doi:10.1103/PHYSREVA.84.023619.
Grond, Julian, Wolfgang Pauli Institut c/o Fakultaet fuer Mathematik, Universitaet Wien, 1090 Vienna, Vienna Center for Quantum Science and Technology, Atominstitut, Technische Universitaet Wien, 1020 Vienna, Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, 69120 Heidelberg, Hohenester, Ulrich, Schmiedmayer, Joerg, & Smerzi, Augusto. Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates. United States. https://doi.org/10.1103/PHYSREVA.84.023619
Grond, Julian, Wolfgang Pauli Institut c/o Fakultaet fuer Mathematik, Universitaet Wien, 1090 Vienna, Vienna Center for Quantum Science and Technology, Atominstitut, Technische Universitaet Wien, 1020 Vienna, Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, 69120 Heidelberg, Hohenester, Ulrich, Schmiedmayer, Joerg, and Smerzi, Augusto. 2011. "Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates". United States. https://doi.org/10.1103/PHYSREVA.84.023619.
@article{osti_22075517,
title = {Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates},
author = {Grond, Julian and Wolfgang Pauli Institut c/o Fakultaet fuer Mathematik, Universitaet Wien, 1090 Vienna and Vienna Center for Quantum Science and Technology, Atominstitut, Technische Universitaet Wien, 1020 Vienna and Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, 69120 Heidelberg and Hohenester, Ulrich and Schmiedmayer, Joerg and Smerzi, Augusto},
abstractNote = {We theoretically analyze a Mach-Zehnder interferometer with trapped condensates and find that it is surprisingly stable against the nonlinearity induced by interparticle interactions. The phase sensitivity, which we study for number-squeezed input states, can overcome the shot noise limit and be increased up to the Heisenberg limit provided that a Bayesian or maximum-likelihood phase estimation strategy is used. We finally demonstrate the robustness of the Mach-Zehnder interferometer in the presence of interactions against condensate oscillations and a realistic atom-counting error.},
doi = {10.1103/PHYSREVA.84.023619},
url = {https://www.osti.gov/biblio/22075517}, journal = {Physical Review. A},
issn = {1050-2947},
number = 2,
volume = 84,
place = {United States},
year = {Mon Aug 15 00:00:00 EDT 2011},
month = {Mon Aug 15 00:00:00 EDT 2011}
}