skip to main content

Title: Electromagnetic near-field interactions of a dipolar emitter with metal and metamaterial nanoslabs

We investigate the emission properties of a polarizable point dipole placed within a subwavelength distance from a silver or a slightly absorbing, negative-index metamaterial nanoslab. Using electromagnetic theory we show that in the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. For the metamaterial slab close to the perfect-lens arrangement, the interaction is relatively weak and of short range. In particular, a region exists in the near zone of the metamaterial slab where the dipole emission is not disturbed by the interaction, and a bright intensity distribution of subwavelength width is created on the opposite side of the slab. This suggests that a low-loss metamaterial slab can act as a near-field imaging device which does not disturb the object. For the silver slab the interaction is stronger and it reaches over the near-field zone, adversely influencing the imaging capabilities in terms of brightness and resolution. The results are important for the development of metal and metamaterial superlenses.
Authors:
;  [1] ;  [1] ;  [2] ;  [3]
  1. Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland)
  2. (Finland)
  3. (Sweden)
Publication Date:
OSTI Identifier:
22072213
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. A; Journal Volume: 84; Journal Issue: 3; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 77 NANOSCIENCE AND NANOTECHNOLOGY; DIPOLES; EMISSION; INTERACTIONS; NANOSTRUCTURES; SILVER