skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Perpendicular dynamics of runaway electrons in tokamak plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4757644· OSTI ID:22068817
; ;  [1]
  1. Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911-Madrid (Spain)

In this paper, it will be shown that the runaway phenomenon in tokamak plasmas cannot be reduced to a one-dimensional problem, based on the competence between electric field acceleration and collisional friction losses in the parallel direction. A Langevin approach, including collisional diffusion in velocity space, will be used to analyze the two-dimensional runaway electron dynamics. An investigation of the runaway probability in velocity space will yield a criterion for runaway, which will be shown to be consistent with the results provided by the more simple test particle description of the runaway dynamics [Fuchs et al., Phys. Fluids 29, 2931 (1986)]. Electron perpendicular collisional scattering will be found to play an important role, relaxing the conditions for runaway. Moreover, electron pitch angle scattering perpendicularly broadens the runaway distribution function, increasing the electron population in the runaway plateau region in comparison with what it should be expected from electron acceleration in the parallel direction only. The perpendicular broadening of the runaway distribution function, its dependence on the plasma parameters, and the resulting enhancement of the runaway production rate will be discussed.

OSTI ID:
22068817
Journal Information:
Physics of Plasmas, Vol. 19, Issue 10; Other Information: (c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English