skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Prospective Evaluation of Staging and Target Volume Definition of Lymph Nodes by {sup 18}FDG PET/CT in Patients With Squamous Cell Carcinoma of Thoracic Esophagus

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [3];  [4];  [5]
  1. Department of Radiation Oncology, Cancer Hospital, Fudan University, Shanghai (China)
  2. Department of Nuclear Medicine, Cancer Hospital, Fudan University, Shanghai (China)
  3. Department of Thoracic Surgery, Cancer Hospital, Fudan University, Shanghai (China)
  4. Department of Pathology, Cancer Hospital, Fudan University, Shanghai (China)
  5. Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

Purpose: To determine an optimal standardized uptake value (SUV) threshold for detecting lymph node (LN) metastases in esophageal cancer using {sup 18}F-Fluorodeoxyglucose positron emission tomography/computer tomography ({sup 18}FDG PET/CT) and to define the resulting nodal target volume, using histopathology as a 'gold standard.' Methods: Sixteen patients with esophageal squamous cell carcinoma who underwent radical esophagectomy and three-field LN dissection after {sup 18}FDG PET/CT and CT scans were enrolled into this study. Locations of LN groups were recorded according to a uniform LN map. Diagnostic performance of different SUV thresholds was assessed by receiver operating characteristic analysis. The optimal cutoff SUV was determined by plotting the false-negative rate (FNR) and false-positive rate (FPR), the sum of both error rates (FNR+FPR), and accuracy against a hypothetical SUV threshold. For each patient, nodal gross tumor volumes (GTVNs) were generated with CT alone (GTVNCT), PET/CT (GTVNPET), and pathologic data (GTVNpath). GTVNCT or GTVNPET was compared with GTVNpath by means of a conformity index (CI), which is the intersection of the two GTVNs divided by the sum of them minus the intersection, e.g., CI{sub CT} and {sub path} = GTVN{sub CT} and {sub path}/(GTVN{sub CT}+ GTVN{sub path} - GTVN{sub CT} and {sub path}). Results: LN metastases occurred in 21 LN groups among the 144 specimens taken from the 16 patients. The area under the receiver operating characteristic curve was 0.9017 {+-} 0.0410. The plot of error rates showed a minimum of FNR+FPR for an SUV of 2.36, at which the sensitivity, specificity, and accuracy were 76.19%, 95.93%, and 93.06%, respectively, whereas those of CT were 33.33%, 94.31%, and 85.42% (p values: 0.0117, 0.7539, and 0.0266). Mean GTVN{sub CT}, GTVN{sub PET}, and GTVN{sub path} were 1.52 {+-} 2.38, 2.82 {+-} 4.51, and 2.68 {+-} 4.16cm{sup 3}, respectively. Mean CI{sub CT} and {sub path} and CI{sub PET} and {sub path} were 0.31 and 0.65 (p value = 0.0352). Conclusions: Diagnostic superiority of PET/CT at an SUV threshold of 2.36 over CT has potential value in nodal target volume definition, but whether this can contribute to better treatment outcomes needs prospective analyses of recurrences in a larger cohort of patients.

OSTI ID:
22054485
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 81, Issue 5; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English