skip to main content

Title: Angle-dependent molecular above-threshold ionization with ultrashort intense linearly and circularly polarized laser pulses

We present molecular above-threshold ionization (MATI) spectra generated by ultrashort intense linearly and circularly polarized laser pulses from nonperturbative numerical solutions of the corresponding time-dependent Schroedinger equation in the molecular-ion H{sub 2}{sup +}. It is found that high-order MATI spectra with maximum kinetic energy 32U{sub p}, where U{sub p}=I{sub 0}/4m{sub e}{omega}{sub 0}{sup 2} is the ponderomotive energy at intensity I{sub 0} and frequency {omega}{sub 0}, can be obtained in H{sub 2}{sup +} at great internuclear distances R for both linear and circular polarizations. Quasiclassical laser-induced collision models confirm that such high-order MATIs mainly result from a collision with neighboring ions of the ionized electron. Interference patterns in the high-order MATI spectra are critically sensitive to both the internuclear distance R of the molecules and the polarizations of the driving laser pulses. Moreover, with few-cycle laser pulses, the carrier-envelope phase sensitivity of MATI angular distributions is also investigated for varying internuclear distances R. At critical internuclear distances for charge-resonance-enhanced ionization, we also find that enhanced interference patterns occur.
Authors:
;  [1]
  1. Laboratoire de Chimie Theorique, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)
Publication Date:
OSTI Identifier:
22051337
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. A; Journal Volume: 84; Journal Issue: 1; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; ANGULAR DISTRIBUTION; HYDROGEN IONS 2 PLUS; INTERFERENCE; IONIZATION; KINETIC ENERGY; LASERS; MOLECULES; NUMERICAL SOLUTION; POLARIZATION; PONDEROMOTIVE FORCE; PULSES; RESONANCE; SCHROEDINGER EQUATION; SPECTRA; TIME DEPENDENCE