skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge resolved electrostatic diagnostic of colliding copper laser plasma plumes

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.3633486· OSTI ID:22046975
 [1];  [2]; ;  [1]
  1. National Centre for Plasma Science and Technology (NCPST), Dublin City University (DCU) (Ireland)
  2. School of Physical Sciences, Dublin City University (DCU), Dublin (Ireland)

The collision of two laser generated plasma plumes can result, under appropriate conditions, in the formation of a ''stagnation layer.'' The processes underlying this phenomenon are complex and time dependent. The majority of experiments over the last few decades have focused upon spectroscopic diagnostic of colliding plasmas. We have performed electrostatic diagnosis of multiply charged copper ions (Cu{sup +} to Cu{sup 5+}) generated via Q-switched pulsed laser ({lambda} = 1.06 {mu}m, {tau} = 6 ns, and E{sub L} = 52-525 mJ) generation of copper plasma plumes from a planar target. Time dependent current traces, charge yields, and kinetic energy (K{sub e}) distributions are obtained for single plasma plumes (S{sub p}) and colliding plasma plumes (C{sub p}). The charge yield from a C{sub p} relative to twice that from a S{sub p} is characterized by a charge yield ratio (CYR) parameter. Superior ion yields for all charge states occur for a discrete range of fluences (F) from colliding plasma plumes leading to a CYR parameter exceeding unity. The kinetic energy distributions from colliding plasma plumes display well defined energy compression via narrowing of the distributions for all fluences and charge states. The extent of this energy compression is charge dependent. Space charge forces within the stagnation layer and the resulting charge dependent acceleration of ions are proposed to account for the transfer of ion kinetic energy in favour of collisional ionization mechanisms.

OSTI ID:
22046975
Journal Information:
Physics of Plasmas, Vol. 18, Issue 10; Other Information: (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English