skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HEAVY ELEMENT NUCLEOSYNTHESIS IN THE BRIGHTEST GALACTIC ASYMPTOTIC GIANT BRANCH STARS

Journal Article · · Astrophysical Journal
 [1];  [2];  [3]
  1. Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek ACT 2611 (Australia)
  2. Instituto de Astrofisica de Canarias, C/ Via Lactea s/n, 38200 La Laguna (Tenerife) (Spain)
  3. Monash Centre for Astrophysics, Monash University, Clayton VIC 3800 (Australia)

We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5 M{sub Sun} and 9 M{sub Sun }, with an initial metallicity of Z = 0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis and Wood mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis and Wood noted that for stars over 2.5 M{sub Sun} the superwind should be delayed until P Almost-Equal-To 750 days at 5 M{sub Sun }. We calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P Almost-Equal-To 700-800 days in models of M = 5, 6, and 7 M{sub Sun }. Post-processing nucleosynthesis calculations show that the 6 and 7 M{sub Sun} models produce the most Rb, with [Rb/Fe] Almost-Equal-To 1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] Almost-Equal-To 1.4 {+-} 0.8 dex). Changing the rate of the {sup 22}Ne +{alpha} reactions results in variations of [Rb/Fe] as large as 0.5 dex in models with a delayed superwind. The largest enrichment in heavy elements is found for models that adopt the NACRE rate of the {sup 22}Ne({alpha}, n){sup 25}Mg reaction. Using this rate allows us to best match the composition of most of the Rb-rich stars. A synthetic evolution algorithm is then used to remove the remaining envelope resulting in final [Rb/Fe] of Almost-Equal-To 1.4 dex although with C/O ratios >1. We conclude that delaying the superwind may account for the large Rb overabundances observed in the brightest metal-rich AGB stars.

OSTI ID:
22037285
Journal Information:
Astrophysical Journal, Vol. 751, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English