skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION

Abstract

We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types {approx}F4 and {approx}F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type {approx}A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities ofmore » the F-type stars in US are typically a factor of {approx}2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 {+-} 1 {+-} 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known substellar companions in Upper Sco using the revised age and find that the inferred masses are typically {approx}20%-70% higher than the original estimates which had assumed a much younger age; specifically, we estimate the mass of 1RXS J1609-2105b to be 14{sup +2}{sub -3} M{sub Jup}, suggesting that it is a brown dwarf rather than a planet. Finally, we find the fraction of F-type stars exhibiting H{alpha} emission and/or a K-band excess consistent with accretion to be 0/17 (<19%; 95% CL) in US at {approx}11 Myr, while UCL has 1/41 (2{sup +5}{sub -1}%; 68% CL) accretors and LCC has 1/50 (2{sup +4}{sub -1}%; 68% CL) accretors at {approx}16 Myr and {approx}17 Myr, respectively.« less

Authors:
; ;  [1]
  1. Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)
Publication Date:
OSTI Identifier:
22011685
Resource Type:
Journal Article
Journal Name:
Astrophysical Journal
Additional Journal Information:
Journal Volume: 746; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0004-637X
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; ASTROPHYSICS; EXPANSION; LUMINOSITY; MASS; PHOTOMETRY; PLANETS; RADIAL VELOCITY; STARS

Citation Formats

Pecaut, Mark J, Mamajek, Eric E, and Bubar, Eric J. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION. United States: N. p., 2012. Web. doi:10.1088/0004-637X/746/2/154.
Pecaut, Mark J, Mamajek, Eric E, & Bubar, Eric J. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION. United States. https://doi.org/10.1088/0004-637X/746/2/154
Pecaut, Mark J, Mamajek, Eric E, and Bubar, Eric J. 2012. "A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION". United States. https://doi.org/10.1088/0004-637X/746/2/154.
@article{osti_22011685,
title = {A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION},
author = {Pecaut, Mark J and Mamajek, Eric E and Bubar, Eric J},
abstractNote = {We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types {approx}F4 and {approx}F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type {approx}A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities of the F-type stars in US are typically a factor of {approx}2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 {+-} 1 {+-} 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known substellar companions in Upper Sco using the revised age and find that the inferred masses are typically {approx}20%-70% higher than the original estimates which had assumed a much younger age; specifically, we estimate the mass of 1RXS J1609-2105b to be 14{sup +2}{sub -3} M{sub Jup}, suggesting that it is a brown dwarf rather than a planet. Finally, we find the fraction of F-type stars exhibiting H{alpha} emission and/or a K-band excess consistent with accretion to be 0/17 (<19%; 95% CL) in US at {approx}11 Myr, while UCL has 1/41 (2{sup +5}{sub -1}%; 68% CL) accretors and LCC has 1/50 (2{sup +4}{sub -1}%; 68% CL) accretors at {approx}16 Myr and {approx}17 Myr, respectively.},
doi = {10.1088/0004-637X/746/2/154},
url = {https://www.osti.gov/biblio/22011685}, journal = {Astrophysical Journal},
issn = {0004-637X},
number = 2,
volume = 746,
place = {United States},
year = {Mon Feb 20 00:00:00 EST 2012},
month = {Mon Feb 20 00:00:00 EST 2012}
}