skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TUNGSTEN ISOTOPIC COMPOSITIONS IN STARDUST SiC GRAINS FROM THE MURCHISON METEORITE: CONSTRAINTS ON THE s-PROCESS IN THE Hf-Ta-W-Re-Os REGION

Journal Article · · Astrophysical Journal
; ;  [1]; ;  [2]; ; ;  [3];  [4];  [5]
  1. Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia)
  2. Centre for Stellar and Planetary Astrophysics, Monash University, Clayton, VIC 3800 (Australia)
  3. Laboratory for Space Sciences and the Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States)
  4. Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada 18071 (Spain)
  5. Mount Stromlo Observatory, Australian National University, Weston Creek, ACT 2611 (Australia)

We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes {sup 182,183,184,186}W and {sup 179,180}Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W ratios, with deficits in {sup 182}W and {sup 183}W with respect to {sup 184}W. The {sup 186}W/{sup 184}W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar {sup 182}W/{sup 184}W, {sup 183}W/{sup 184}W, and {sup 186}W/{sup 184}W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their {sup 182}W/{sup 184}W, {sup 183}W/{sup 184}W, and {sup 179}Hf/{sup 180}Hf isotopic compositions, although a small adjustment in the s-process production of {sup 183}W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the {sup 186}W/{sup 184}W ratios observed in the SiC grains, even when the current {sup 185}W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e.g., the formation of the {sup 13}C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the {sup 22}Ne neutron source) may affect current s-process predictions.

OSTI ID:
22004331
Journal Information:
Astrophysical Journal, Vol. 744, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English