skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

Journal Article · · Waste Management
 [1];  [1];  [2]
  1. Department of Home Economics and Ecology, Harokopio University, Athens (Greece)
  2. Department of Geography, Harokopio University, Athens (Greece)

Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

OSTI ID:
21612936
Journal Information:
Waste Management, Vol. 32, Issue 1; Other Information: DOI: 10.1016/j.wasman.2011.09.002; PII: S0956-053X(11)00380-1; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0956-053X
Country of Publication:
United States
Language:
English