skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Proton stability and light Z' inspired by string derived models

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL (United Kingdom)

Proton stability is one of the most perplexing puzzles in particle physics. While the renormalizable standard model forbids proton decay mediating operators due to accidental global symmetries, many of its extensions introduce such dimension four, five and six operators. Furthermore, it is, in general, expected that quantum gravity only respects local gauge, or discreet, symmetries. String theory provides the arena to study particle physics in a consistent framework of perturbative quantum gravity. An appealing proposition, in this context, is that the dangerous operators are suppressed by an Abelian gauge symmetry, which is broken near the TeV scale. A viable U(1) symmetry should also be anomaly free, be family universal, and allow the generation of fermion masses via the Higgs mechanism. We discuss such U(1) symmetries that arise in quasirealistic free fermionic heterotic-string derived models. Ensuring that the U(1) symmetry is anomaly free at the low scale requires that the standard model spectrum is augmented by additional states that are compatible with the charge assignments in the string models. We construct such string-inspired models and discuss some of their phenomenological implications.

OSTI ID:
21607968
Journal Information:
Physical Review. D, Particles Fields, Vol. 84, Issue 8; Other Information: DOI: 10.1103/PhysRevD.84.086006; (c) 2011 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English