skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. I. DEPENDENCE ON BASIC CORE PROPERTIES

Journal Article · · Astrophysical Journal
 [1]
  1. Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

Radiative transfer calculations of massive star formation are presented. These are based on the Turbulent Core Model of McKee and Tan and self-consistently included a hydrostatic core, an inside-out expansion wave, a zone of free-falling rotating collapse, wide-angle dust-free outflow cavities, an active accretion disk, and a massive protostar. For the first time for such models, an optically thick inner gas disk extends inside the dust destruction front. This is important to conserve the accretion energy naturally and for its shielding effect on the outer region of the disk and envelope. The simulation of radiation transfer is performed with the Monte Carlo code of Whitney, yielding spectral energy distributions (SEDs) for the model series, from the simplest spherical model to the fiducial one, with the above components each added step by step. Images are also presented in different wavebands of various telescope cameras, including Spitzer IRAC and MIPS, SOFIA FORCAST, and Herschel PACS and SPIRE. The existence of the optically thick inner disk produces higher optical wavelength fluxes but reduces near- and mid-IR emission. The presence of outflow cavities, the inclination angle to the line of sight, and the thickness of the disk all affect the SEDs and images significantly. For the high-mass surface density cores considered here, the mid-IR emission can be dominated by the outflow cavity walls, as has been suggested by De Buizer. The effect of varying the pressure of the environment bounding the surface of the massive core is also studied. With lower surface pressures, the core is larger, has lower extinction and accretion rates, and the observed mid-IR flux from the disk can then be relatively high even though the accretion luminosity is lower. In this case the silicate absorption feature becomes prominent, in contrast to higher density cores forming under higher pressures.

OSTI ID:
21576776
Journal Information:
Astrophysical Journal, Vol. 733, Issue 1; Other Information: DOI: 10.1088/0004-637X/733/1/55; ISSN 0004-637X
Country of Publication:
United States
Language:
English