skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resolving electron scale turbulence in spherical tokamaks with flow shear

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.3551701· OSTI ID:21535167
 [1];  [2]
  1. Centre for Fusion, Space, and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
  2. General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

This paper presents nonlinear gyrokinetic simulations of electron temperature gradient (ETG) turbulence based on spherical tokamak (ST) parameters. Most significantly the simulations include the strong toroidal flow and flow shear present in STs that suppress ion-scale turbulence while using kinetic ions at full mass ratio (m{sub i}/m{sub e}=3600). The flow shear provides a physical long-wavelength cutoff mechanism that aids saturation of the simulations, which has previously been demonstrated to be problematic depending on magnetic shear. As magnetic shear varies widely in STs we systematically demonstrate saturation and convergence of the ETG simulations with respect to grid resolution, physical domain size, and boundary conditions. While using reduced ion mass or adiabatic ions can lessen computational expense they do not always provide reliable results. The resulting spectra from converged simulations are anisotropic everywhere in contrast to previous ETG simulations without flow shear. These results have implications for interpreting turbulence measurements, and represent an important step in determining when and where ETG turbulence is expected to be relevant in ST plasmas. They are also important in the context of validating simulations with both experimental transport analysis and turbulence measurements.

OSTI ID:
21535167
Journal Information:
Physics of Plasmas, Vol. 18, Issue 2; Other Information: DOI: 10.1063/1.3551701; (c) 2011 American Institute of Physics; ISSN 1070-664X
Country of Publication:
United States
Language:
English