skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assembly of two layered cobalt-molybdenum phosphates: Changing interlayer distances by tuning the lengths of amine ligands

Journal Article · · Journal of Solid State Chemistry
 [1];  [2];  [1]
  1. College of Pharmacy, Jiamusi University, Jiamusi 154007 (China)
  2. Key Laboratory of Materials Physics and Chemistry, Colleges of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China)

By using amines with different lengths, two layered cobalt-molybdenum phosphates with different interlayer distances, (C{sub 2}N{sub 2}H{sub 10}) [HCo(H{sub 2}O){sub 2}P{sub 2}MoO{sub 10}] (1), and (C{sub 3}N{sub 2}H{sub 12}){sub 4{l_brace}}Co{sub 3} [P{sub 4}Mo{sub 6}O{sub 26}(OH){sub 5}]{sub 2{r_brace}}. 5H{sub 2}O (2), have been hydrothermally synthesized and characterized. In compound 1, the H{sub 2}en direct the [CoMoP{sub 2}] clusters to form a layered framework. By changing the lengths of protonated organic amines (H{sub 2}en to 1, 3-H{sub 2}pn), compound 2 is obtained, in which the sandwich-shaped [Co (Mo{sub 6}P{sub 4}){sub 2}] clusters are linked by tetrahedrally coordinated cobalt into a layered framework. With the lengths of protonated organic amines increasing, the interlayer distances in compound 2 become larger. This work successfully demonstrates that tuning the lengths and conformation of the protonated organic amines can provide a facile route for the formation of organically templated inorganic open-framework materials. Additionally, susceptibility measurement shows that the two compounds both exhibit antiferromagnetic interactions. -- Graphical abstract: By using amines with different lengths, two layered cobalt-molybdenum phosphates with different interlayer distances have been hydrothermally synthesized. Display Omitted Research highlights: {yields} Two layered compounds have been synthesized by utilizing amines with different lengths. {yields} The chain lengths of amines can influence the overall supramolecular framework of the PMo-TMCs. {yields} The conformation of amines may influence the stacking mode of the inorganic building blocks. {yields} Susceptibility measurement shows that the two compounds both exhibit antiferromagnetic interactions.

OSTI ID:
21505055
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 2; Other Information: DOI: 10.1016/j.jssc.2010.12.010; PII: S0022-4596(10)00548-7; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English