skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [2];  [1]
  1. Department of Clinical Experimental Research, Glostrup Research Institute, Ndr. Ringvej 69, 2600 Glostrup (Denmark)
  2. Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, University Hospital of Lund, Lund (Sweden)

Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET{sub B} receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke.

OSTI ID:
21460236
Journal Information:
Toxicology and Applied Pharmacology, Vol. 249, Issue 1; Other Information: DOI: 10.1016/j.taap.2010.08.010; PII: S0041-008X(10)00283-8; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0041-008X
Country of Publication:
United States
Language:
English