skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PARALLEL HOP: A SCALABLE HALO FINDER FOR MASSIVE COSMOLOGICAL DATA SETS

Journal Article · · Astrophysical Journal, Supplement Series

Modern N-body cosmological simulations contain billions (10{sup 9}) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly employed halo finders, such that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here, we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes message passing interface and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger data sets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit {sup yt}, an analysis toolkit for adaptive mesh refinement data that include complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and data sets in excess of 2000{sup 3} particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.

OSTI ID:
21454933
Journal Information:
Astrophysical Journal, Supplement Series, Vol. 191, Issue 1; Other Information: DOI: 10.1088/0067-0049/191/1/43; ISSN 0067-0049
Country of Publication:
United States
Language:
English

Similar Records

THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES
Journal Article · Thu Jan 10 00:00:00 EST 2013 · Astrophysical Journal · OSTI ID:21454933

COMPASO: A new halo finder for competitive assignment to spherical overdensities
Journal Article · Tue Oct 19 00:00:00 EDT 2021 · Monthly Notices of the Royal Astronomical Society · OSTI ID:21454933

Parallel halo finding in N-body cosmology simulations
Conference · Tue Dec 31 00:00:00 EST 1996 · OSTI ID:21454933