skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EARLY DYNAMICAL EVOLUTION OF THE SOLAR SYSTEM: PINNING DOWN THE INITIAL CONDITIONS OF THE NICE MODEL

Journal Article · · Astrophysical Journal

In the recent years, the 'Nice' model of solar system formation has attained an unprecedented level of success in reproducing much of the observed orbital architecture of the solar system by evolving the planets to their current locations from a more compact configuration. Within the context of this model, the formation of the classical Kuiper Belt requires a phase during which the ice giants have a high eccentricity. An outstanding question of this model is the initial configuration from which the solar system started out. Recent work has shown that multi-resonant initial conditions can serve as good candidates, as they naturally prevent vigorous type-II migration. In this paper, we use analytical arguments, as well as self-consistent numerical N-body simulations to identify fully resonant initial conditions, whose dynamical evolution is characterized by an eccentric phase of the ice giants, as well as planetary scattering. We find a total of eight such initial conditions. Four of these primordial states are compatible with the canonical 'Nice' model, while the others imply slightly different evolutions. The results presented here should prove useful in further development of a comprehensive model for solar system formation.

OSTI ID:
21452918
Journal Information:
Astrophysical Journal, Vol. 716, Issue 2; Other Information: DOI: 10.1088/0004-637X/716/2/1323; ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

INSTABILITY-DRIVEN DYNAMICAL EVOLUTION MODEL OF A PRIMORDIALLY FIVE-PLANET OUTER SOLAR SYSTEM
Journal Article · Sun Jan 15 00:00:00 EST 2012 · Astrophysical Journal Letters · OSTI ID:21452918

Instabilities in the Early Solar System Due to a Self-gravitating Disk
Journal Article · Fri Feb 01 00:00:00 EST 2019 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:21452918

Orbital perturbations of the Galilean satellites during planetary encounters
Journal Article · Fri Aug 01 00:00:00 EDT 2014 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:21452918