skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Species differences in methanol and formic acid pharmacokinetics in mice, rabbits and primates

Journal Article · · Toxicology and Applied Pharmacology
; ;  [1];  [2]
  1. Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada)
  2. Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada)

Methanol (MeOH) is metabolized primarily by alcohol dehydrogenase in humans, but by catalase in rodents, with species variations in the pharmacokinetics of its formic acid (FA) metabolite. The teratogenic potential of MeOH in humans is unknown, and its teratogenicity in rodents may not accurately reflect human developmental risk due to differential species metabolism, as for some other teratogens. To determine if human MeOH metabolism might be better reflected in rabbits than rodents, the plasma pharmacokinetics of MeOH and FA were compared in male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys over time (24, 48 and 6 h, respectively) following a single intraperitoneal injection of 0.5 or 2 g/kg MeOH or its saline vehicle. Following the high dose, MeOH exhibited saturated elimination kinetics in all 3 species, with similar peak concentrations and a 2.5-fold higher clearance in mice than rabbits. FA accumulation within 6 h in primates was 5-fold and 43-fold higher than in rabbits and mice respectively, with accumulation being 10-fold higher in rabbits than mice. Over 48 h, FA accumulation was nearly 5-fold higher in rabbits than mice. Low-dose MeOH in mice and rabbits resulted in similarly saturated MeOH elimination in both species, but with approximately 2-fold higher clearance rates in mice. FA accumulation was 3.8-fold higher in rabbits than mice. Rabbits more closely than mice reflected primates for in vivo MeOH metabolism, and particularly FA accumulation, suggesting that developmental studies in rabbits may be useful for assessing potential human teratological risk.

OSTI ID:
21451179
Journal Information:
Toxicology and Applied Pharmacology, Vol. 247, Issue 1; Other Information: DOI: 10.1016/j.taap.2010.05.009; PII: S0041-008X(10)00182-1; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0041-008X
Country of Publication:
United States
Language:
English