skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of two-photon exchange effect with CLAS

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.3483406· OSTI ID:21426469
 [1]
  1. Florida International University (United States)

The structure of the proton is one the most important and most studied topics in nuclear physics. However, discrepant measurements of the proton's electromagnetic form factor ratio, G{sub E}/G{sub M}, seriously jeopardize a definitive understanding of the proton's structure. Measurements of G{sub E}G{sub M} using the Rosenbluth separation technique disagree with those using polarization transfer methods by about a factor of three at Q{sup 2{approx}}5.6 GeV{sup 2}. It has been hypothesized that this discrepancy is due to two-photon exchange (TPE) effects that are not part of the usual radiative corrections. Theoretical corrections for the TPE effect are difficult due to the fact that a large number of excited nucleon states can contribute to the process. However, the TPE effect can be directly determined by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = {sigma}(e{sup +})/{sigma}(e{sup -}), as the TPE effect changes sign with respect to the charge of the incident particle. A brief test run of a modified beamline and the CLAS detector at Jefferson Lab has resulted in the most precise measurements of the R to date. We will present results from the test run covering Q{sup 2}<0.8 GeV{sup 2} and 0.78{<=}{epsilon}{<=}0.97. In addition, the test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality so that the measurements can be extended up to Q{sup 2{approx}}3.0 GeV{sup 2}.

OSTI ID:
21426469
Journal Information:
AIP Conference Proceedings, Vol. 1257, Issue 1; Conference: HADRON 2009: 13. international conference on hadron spectroscopy, Tallahassee, FL (United States), 29 Nov - 4 Dec 2009; Other Information: DOI: 10.1063/1.3483406; (c) 2010 American Institute of Physics; ISSN 0094-243X
Country of Publication:
United States
Language:
English