skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Macro-to-microchannel transition in two-phase flow: Part 1 - Two-phase flow patterns and film thickness measurements

Journal Article · · Experimental Thermal and Fluid Science
;  [1]
  1. Ecole Polytechnique Federale de Lausanne, EPFL-STI-IGM-LTCM, Station 9, CH-1015 Lausanne (Switzerland)

The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)

OSTI ID:
21390712
Journal Information:
Experimental Thermal and Fluid Science, Vol. 35, Issue 1; Other Information: Elsevier Ltd. All rights reserved; ISSN 0894-1777
Country of Publication:
United States
Language:
English

Similar Records

Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel
Journal Article · Wed Apr 15 00:00:00 EDT 2009 · Experimental Thermal and Fluid Science · OSTI ID:21390712

Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system
Journal Article · Fri Jan 15 00:00:00 EST 2010 · Experimental Thermal and Fluid Science · OSTI ID:21390712

Scalable and Resilient Etched Metallic Micro- and Nanostructured Surfaces for Enhanced Flow Boiling
Journal Article · Mon Jun 21 00:00:00 EDT 2021 · ACS Applied Nano Materials · OSTI ID:21390712