skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion

Journal Article · · Physical Review Letters
; ; ; ; ; ; ; ; ; ; ; ; ; ;  [1]; ;  [2]; ;  [3];  [4]
  1. Lawrence Livermore National Laboratory, Livermore, California (United States)
  2. General Atomics, San Diego, California (United States)
  3. Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California (United States)
  4. Department of Electrical and Computer Engineering, University of Alberta, Alberta (Canada)

The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K{sub {alpha}} radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of {approx}2-4 MeV electrons.

OSTI ID:
21386780
Journal Information:
Physical Review Letters, Vol. 104, Issue 5; Other Information: DOI: 10.1103/PhysRevLett.104.055002; (c) 2010 The American Physical Society; ISSN 0031-9007
Country of Publication:
United States
Language:
English