skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uncatalysed and catalysed soot combustion under NO{sub x} + O{sub 2}: Real diesel versus model soots

Journal Article · · Combustion and Flame
; ;  [1]
  1. MCMA Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Alicante, Ap.99-E-03080 Alicante (Spain)

In this work, the uncatalysed and catalysed combustion of two commercial carbon blacks and three diesel soot samples were analysed and related to the physico-chemical properties of these carbon materials. Model soot samples are less reactive than real soot samples, which can be attributed, mainly, to a lower proportion in heteroatoms and a higher graphitic order for the case of one of the carbon blacks. Among the diesel soot samples tested, the most relevant differences are the volatile matter/fixed carbon contents, which are directly related to the engine operating conditions (idle or loaded) and to the use of an oxidation catalyst or not in the exhaust. The soot collected after an oxidation catalyst (A-soot) is more reactive than the counterpart virgin soot obtained under the same engine operating modes but before the oxidation catalyst. The reactivity of the different soot samples follows the same trend under uncatalysed and catalysed combustion, the combustion profiles being always shifted towards lower temperatures for the catalysed reactions. The differences between the soot samples become less relevant in the presence of a catalyst. The ceria-zirconia catalysts tested are very effective not only to oxidise soot but also to combust the soluble organic fraction emitted at low temperatures. The most reactive soot (A-soot) exhibits a T{sub 50%} parameter of 450 C when using the most active catalyst. (author)

OSTI ID:
21379815
Journal Information:
Combustion and Flame, Vol. 157, Issue 11; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English