skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A CLASS I AND CLASS II CH{sub 3}OH MASER SURVEY OF EGOs FROM THE GLIMPSE SURVEY

Journal Article · · Astrophysical Journal
;  [1];
  1. University of Wisconsin, Madison, WI 53706 (United States)

We present the results of a high angular resolution Very Large Array (VLA) Class I 44 GHz and Class II 6.7 GHz CH{sub 3}OH maser survey of a sample of {approx}20 massive young stellar object (MYSO) outflow candidates selected on the basis of extended 4.5 {mu}m emission in Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire images. These 4.5 {mu}m selected candidates are referred to as extended green objects (EGOs), for the common coding of this band as green in three-color Infrared Array Camera images. The detection rate of 6.7 GHz Class II CH{sub 3}OH masers, which are associated exclusively with massive YSOs, toward EGOs is {approx}>64%-nearly double the detection rate of surveys using other MYSO selection criteria. The detection rate of Class I 44 GHz CH{sub 3}OH masers, which trace molecular outflows, is {approx}89% toward EGOs associated with 6.7 GHz CH{sub 3}OH masers. The two types of CH{sub 3}OH masers exhibit different spatial distributions: 6.7 GHz masers are centrally concentrated and usually coincide with 24 {mu}m emission, while 44 GHz masers are widely distributed and generally trace diffuse 4.5 {mu}m features. We also present results of a complementary James Clerk Maxwell Telescope (JCMT) single-pointing molecular line survey of EGOs in the outflow tracers HCO{sup +}(3-2) and SiO(5-4). The HCO{sup +} line profiles and high SiO detection rate (90%) are indicative of the presence of active outflows. No 44 GHz continuum emission is detected at the 5 mJy beam{sup -1} (5{sigma}) level toward 95% of EGOs surveyed, excluding bright ultracompact H II regions as powering sources for the 4.5 {mu}m outflows. The results of our surveys constitute strong evidence that EGOs are young, massive YSOs, with active outflows, presumably powered by ongoing accretion.

OSTI ID:
21335983
Journal Information:
Astrophysical Journal, Vol. 702, Issue 2; Other Information: DOI: 10.1088/0004-637X/702/2/1615; Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English