skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Real-Time Dosimetry for Radiobiology Experiments Using 25 MeV LINAC

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.3120062· OSTI ID:21289561
;  [1]; ;  [2];  [2]
  1. Department of Physics, Idaho State University, 921 S. 8th St., MS 8106, Pocatello, ID 83209 (United States)
  2. Idaho Accelerator Center, Idaho State University, 921 S. 8th St., MS 8263, Pocatello, ID 83209 (United States)

The next generation of radiobiology research requires increasingly more complex radiation sources to address questions ranging from the effects of space-based radiation to the influence of dose rate on biological systems. The Idaho Accelerator Center (IAC) has developed a radiobiology research facility to address some of these questions. The irradiation challenge is to deliver stable and reproducible conditions of high dose rate with well-controlled beam uniformity, dose, and dose rate under controlled temperature. In this work, we used a 25 MeV modified medical grade linear accelerator (LINAC) to obtain a high and adjustable electron dose rate. To overcome electron beam drift we used a collimator that both assisted the LINAC operator to steer the beam and ensured that regardless of beam drift, only the fixed collimated beam would irradiate the specimens. In addition, we utilized a beam flattener to keep the beam variation as low as 3% at 2.5 cm from the beam's center, and 1% variation between the simultaneously irradiated sample tubes. We also demonstrated that a segmented Faraday 'cup'(FC) array provides a useful real-time beam scanning and monitoring system, and is promising for implementing real-time dosimetry and control.

OSTI ID:
21289561
Journal Information:
AIP Conference Proceedings, Vol. 1099, Issue 1; Conference: CAARI 2008: 12. international conference on application of accelerators in research and industry, Fort Worth, TX (United States), 10-15 Aug 2008; Other Information: DOI: 10.1063/1.3120062; (c) 2009 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English