skip to main content

Title: Plasma Instabilities in Gamma-Ray Bursts

Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.
Authors:
 [1]
  1. Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
Publication Date:
OSTI Identifier:
21255164
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1085; Journal Issue: 1; Conference: 4. international meeting on high energy gamma-ray astronomy, Heidelberg (Germany), 7-11 Jul 2008; Other Information: DOI: 10.1063/1.3076702; (c) 2009 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; ASTROPHYSICS; BARYONS; COSMIC GAMMA BURSTS; COSMIC GAMMA SOURCES; MAGNETIC FIELDS; PLASMA INSTABILITY; RELATIVISTIC RANGE; SOLAR SYSTEM; TURBULENCE