skip to main content

Title: Steel shear walls, behavior, modeling and design

In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. Themore » main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of overturning moments and any normal forces that might act on the steel shear wall.« less
Authors:
 [1]
  1. University of California, Berkeley, 781 Davis Hall, Berkeley, CA, 94720-1710 (United States)
Publication Date:
OSTI Identifier:
21149029
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1020; Journal Issue: 1; Conference: 2008 seismic engineering conference: Commemorating the 1908 Messina and Reggio Calabria earthquake, Reggio Calabria (Italy), 8-11 Jul 2008; Other Information: DOI: 10.1063/1.2963889; (c) 2008 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; CONCRETES; DESIGN; DUCTILITY; EARTHQUAKES; ENERGY LOSSES; ENGINEERING; FLEXIBILITY; SEISMIC EFFECTS; SEISMOLOGY; SHEAR; STEELS; THICKNESS