skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of a new layered organic-inorganic hybrid nickel(II) 1,4:5,8-naphthalenediimide bis-phosphonate, exhibiting canted antiferromagnetism, with T{sub c}{approx}21 K

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]
  1. Istituto di Struttura della Materia del CNR, Sez. di Montelibretti, Via Salaria km 29.3, I-00016 Monterotondo Stazione (Italy)

A new Ni(II) layered hybrid organic-inorganic compound of formula Ni{sub 2}[(NDI-BP)(H{sub 2}O){sub 2}].2H{sub 2}O has been prepared in very mild conditions from N,N'-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl{sub 2}. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 A. The inorganic layers consist of corner sharing [NiO{sub 5}(H{sub 2}O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at T{sub c}{approx}21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound. - Graphical abstract: A new layered hybrid organic-inorganic Ni(II) N,N'-bis(2-phosphonoethyl)-naphthalene 1,4:5,8 tetracarboxydiimide complex has been synthesized and characterized. Magnetic measurements as a function of temperature and at different fields show that the compound is magnetically ordered below T{sub c}{approx}21 K.

OSTI ID:
21128300
Journal Information:
Journal of Solid State Chemistry, Vol. 181, Issue 5; Other Information: DOI: 10.1016/j.jssc.2008.02.014; PII: S0022-4596(08)00103-5; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English