skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs

Journal Article · · Toxicology and Applied Pharmacology
;  [1]; ; ;  [2];  [1];  [1]
  1. Pharmacology Research Laboratories I, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85, Jusohonmachi, Yodogawa-ku, Osaka 532-8686 (Japan)
  2. Development Research Center, Takeda Pharmaceutical Company Limited, 2-17-85, Jusohonmachi, Yodogawa-ku, Osaka 532-8686 (Japan)

High-dose statin treatment has been recommended as a primary strategy for aggressive reduction of LDL cholesterol levels and protection against coronary artery disease. The effectiveness of high-dose statins may be limited by their potential for myotoxic side effects. There is currently little known about the molecular mechanisms of statin-induced myotoxicity. Previously we showed that T-91485, an active metabolite of the squalene synthase inhibitor lapaquistat acetate (lapaquistat: a previous name is TAK-475), attenuated statin-induced cytotoxicity in human skeletal muscle cells [Nishimoto, T., Tozawa, R., Amano, Y., Wada, T., Imura, Y., Sugiyama, Y., 2003a. Comparing myotoxic effects of squalene synthase inhibitor, T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A. Biochem. Pharmacol. 66, 2133-2139]. In the current study, we investigated the effects of lapaquistat administration on statin-induced myotoxicity in vivo. Guinea pigs were treated with either high-dose cerivastatin (1 mg/kg) or cerivastatin together with lapaquistat (30 mg/kg) for 14 days. Treatment with cerivastatin alone decreased plasma cholesterol levels by 45% and increased creatine kinase (CK) levels by more than 10-fold (a marker of myotoxicity). The plasma CK levels positively correlated with the severity of skeletal muscle lesions as assessed by histopathology. Co-administration of lapaquistat almost completely prevented the cerivastatin-induced myotoxicity. Administration of mevalonolactone (100 mg/kg b.i.d.) prevented the cerivastatin-induced myotoxicity, confirming that this effect is directly related to HMG-CoA reductase inhibition. These results strongly suggest that cerivastatin-induced myotoxicity is due to depletion of mevalonate derived isoprenoids. In addition, squalene synthase inhibition could potentially be used clinically to prevent statin-induced myopathy.

OSTI ID:
21077778
Journal Information:
Toxicology and Applied Pharmacology, Vol. 223, Issue 1; Other Information: DOI: 10.1016/j.taap.2007.05.005; PII: S0041-008X(07)00227-X; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English