skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrothermal synthesis attempts of dawsonite-type hydroxymetalocarbonate precursor compounds for catalytic Ho, Sm, and La oxides

Journal Article · · Materials Research Bulletin
;  [1]
  1. Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)

Chemical interactions in mixed, aqueous solutions of NH{sub 4}HCO{sub 3} and M(NO{sub 3}){sub 3}.9H{sub 2}O, where M stands for Ho, Sm, or La, were facilitated under various hydrothermal treatment conditions (pH 8-12 and temperature = 75-135 deg. C). The solution chemistry established did not make available necessary concentrations of soluble HCO{sub 3}{sup -} and MO(OH){sub 2}{sup -} species for the formation of dawsonite-type ammonium hydroxymetalocarbonates, NH{sub 4}M(CO{sub 3})(OH){sub 2}, but, alternatively, high concentrations of soluble CO{sub 3}{sup 2-}, and M(H{sub 2}O){sub n}{sup 3+} or M(H{sub 2}O){sub n-1}(OH){sup 2+} facilitating, respectively, precipitation of corresponding hydrated carbonate, M{sub 2}(CO{sub 3}){sub 2}.2H{sub 2}O, or carbonate hydroxide, MCO{sub 3}(OH). X-ray powder diffractometry, infrared spectroscopy, and thermal analyses proved alternative formation of Ho{sub 2}(CO{sub 3}){sub 3}.2H{sub 2}O or LaCO{sub 3}(OH) under the whole set of hydrothermal treatment conditions probed, and Sm{sub 2}(CO{sub 3}){sub 3}.2H{sub 2}O at pH < 10 or SmCO{sub 3}(OH) at pH {>=} 10, thus implying dependence of the composition of the product carbonate compound on the hydrolysability of the initial M(H{sub 2}O){sub n}{sup 3+} species and, hence, the metal ionic size (La > Sm > Ho). Calcination of the various hydrothermal treatment products at {>=}600 deg. C resulted in the thermal genesis of the corresponding sesqui-oxides (M{sub 2}O{sub 3}). Bulk and surface characterization studies of the product oxides, employing N{sub 2} sorptiometry and scanning electron microscopy, in addition to the above analytical techniques, revealed overall strong crystallinity, large average crystallite size, and well-defined particle morphology. They revealed, moreover, surfaces, though of limited accessibilities ({<=}13 m{sup 2}/g), exposing OH groups of various coordination symmetries and, hence, acid-base properties, thus furnishing promising surface catalytic attributes.

OSTI ID:
21068171
Journal Information:
Materials Research Bulletin, Vol. 43, Issue 1; Other Information: DOI: 10.1016/j.materresbull.2007.07.026; PII: S0025-5408(07)00334-0; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English