skip to main content

SciTech ConnectSciTech Connect

Title: In situ ligand synthesis with the UO{sub 2}{sup 2+} cation under hydrothermal conditions

A novel uranium (VI) coordination polymer, (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2} (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, {beta}=119.112(4){sup o}, Z=4, R{sub 1}=0.0237, wR{sub 2}=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO{sub 2} to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C{sub 2}O{sub 4}).nH{sub 2}O; 0{<=}n{<=}1) and a known uranyl oxalate [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}.H{sub 2}O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solidmore » state. - Graphical abstract: A novel homometallic coordination polymer (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2}, in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO{sub 2}.« less
Authors:
 [1] ;  [1] ;  [2]
  1. Department of Chemistry, George Washington University, Washington, DC (United States)
  2. (United States), E-mail: cahill@gwu.edu
Publication Date:
OSTI Identifier:
21043846
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 180; Journal Issue: 9; Other Information: DOI: 10.1016/j.jssc.2007.06.036; PII: S0022-4596(07)00255-1; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANIONS; CARBON DIOXIDE; CATIONS; COPPER COMPLEXES; DECARBOXYLATION; EMISSION SPECTRA; EXCITATION; FLUORESCENCE; HYDROTHERMAL SYNTHESIS; LIGANDS; MONOCLINIC LATTICES; OXALATES; OXALIC ACID; POLYMERS; URANIUM NITRATES; URANYL COMPLEXES