skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth of new ternary intermetallic phases from Ca/Zn eutectic flux

Journal Article · · Journal of Solid State Chemistry
 [1]
  1. Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (United States)

The eutectic 7.3:2.7 molar ratio mixture of calcium and zinc metal melts at 394 deg. C and was explored as a solvent for the growth of new intermetallic phases for potential use as hydrogen storage materials. The reaction of nickel in this molten mixture produces two new phases-the CaCu{sub 5}-related structure CaNi{sub 2}Zn{sub 3} (P6/mmm, a=8.9814(5) A, c=4.0665(5) A) and a new cubic structure Ca{sub 21}Ni{sub 2}Zn{sub 36} (Fd-3m, a=21.5051(4) A). Palladium-containing reactions produced CaPd{sub 0.85}Zn{sub 1.15} with the orthorhombic TiNiSi structure type (Pnma, a=7.1728(9) A, b=4.3949(5) A, c=7.7430(9) A). Reactions of platinum in the Ca/Zn mixture produce Ca{sub 6}Pt{sub 3}Zn{sub 5}, with an orthorhombic structure related to that of W{sub 3}CoB{sub 3} (Pmmn, a=13.7339(9) A, b=4.3907(3) A, c=10.7894(7) A). - Graphical abstract: The calcium/zinc eutectic is a useful synthesis medium for the growth of new intermetallic phases. Addition of group 10 transition metals to this flux produces ternary phases CaNi{sub 2}Zn{sub 3}, Ca{sub 21}Ni{sub 2}Zn{sub 36}, CaPd{sub 0.85}Zn{sub 1.15}, and Ca{sub 6}Pt{sub 3}Zn{sub 5}. The nickel-centered zinc icosahedron surrounded by a pentagonal dodecahedron of calcium atoms is found in Ca{sub 21}Ni{sub 2}Zn{sub 36}.

OSTI ID:
21015728
Journal Information:
Journal of Solid State Chemistry, Vol. 180, Issue 3; Other Information: DOI: 10.1016/j.jssc.2006.12.022; PII: S0022-4596(06)00653-0; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English