skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure of laminar sooting inverse diffusion flames

Journal Article · · Combustion and Flame
;  [1]; ; ;  [2]
  1. Microgravity Combustion Laboratory, University of California Berkeley, Berkeley, CA 94720 (United States)
  2. Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550 (United States)

The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

OSTI ID:
20909789
Journal Information:
Combustion and Flame, Vol. 149, Issue 4; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English