skip to main content

Title: A biophysical approach to the optimisation of dendritic-tumour cell electrofusion

Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [3] ;  [4] ;  [2]
  1. Lehrstuhl fuer Biotechnologie, Biozentrum, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)
  2. Abteilung Kryobiophysik and Kryotechnologie, Fraunhofer-Institut fuer Biomedizinische Technik, 66386 St. Ingbert (Germany)
  3. Department of Haematology, Cambridge University, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH (United Kingdom)
  4. Lehrstuhl fuer Biotechnologie, Biozentrum, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany). E-mail: zimmermann@biozentrum.uni-wuerzburg.de
Publication Date:
OSTI Identifier:
20854390
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 346; Journal Issue: 3; Other Information: DOI: 10.1016/j.bbrc.2006.05.193; PII: S0006-291X(06)01257-5; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALIGNMENT; ANIMAL CELLS; BIOLOGICAL STRESS; BLOOD; DIELECTRIC MATERIALS; HYBRIDIZATION; MICROSCOPES; OPTIMIZATION; SACCHAROSE; SORBITOL; TIME RESOLUTION; VACCINES