skip to main content

Title: Electrolytic Enrichment of Tritium with Solid Polymer Electrolyte for Application to Environmental Measurements

We evaluated electrolytic separation factors of hydrogen isotopes by SPE (Solid Polymer Electrolyte) for application to environmental tritium analysis. The apparent separation factors {alpha}{sub a} for deuterium and {beta}{sub a} for tritium were determined as 3.5 {+-} 0.1 and 6.2 {+-} 0.5, respectively. The tritium enrichment of 8.4 times was achieved, when a 1000 ml of sample water was electrolyzed to about 60 ml. The chemical composition changes before and after the electrolysis were examined, showing an increase in H{sup +} and Na{sup +} concentrations and a decrease in Mg{sup 2+} and Ca{sup 2+}concentrations. F{sup -}, which was not contained in the sample water, was detected after electrolysis accompanying with a reduction of SO{sub 4}{sup 2-}, Cl{sup -} and NO{sub 3}{sup -}. The memory of tritium and ions in the electrolysis cell after electrolysis was possible to be eliminated by washings with de-ionized water. Tritium concentrations of rain at Kumamoto, Japan were determined with a combination of the present electrolytic enrichment system and liquid scintillation counting.
Authors:
; ;  [1]
  1. Kumamoto University (Japan)
Publication Date:
OSTI Identifier:
20854202
Resource Type:
Journal Article
Resource Relation:
Journal Name: Fusion Science and Technology; Journal Volume: 48; Journal Issue: 1; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, All rights reserved. http://epubs.ans.org/; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CALCIUM IONS; CHEMICAL COMPOSITION; DEUTERIUM; ELECTROLYSIS; ELECTROLYTES; ENRICHMENT; FLUORINE IONS; HYDROGEN IONS 1 PLUS; MAGNESIUM IONS; NITRATES; POLYMERS; SCINTILLATION COUNTING; SODIUM IONS; SOLAR PROTONS; SULFATES; TRITIUM