skip to main content

Title: MCNP-based computational model for the Leksell Gamma Knife

We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume.more » The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.« less
Authors:
; ;  [1] ;  [2] ;  [3]
  1. Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 11519 (Czech Republic)
  2. (United States)
  3. (Czech Republic)
Publication Date:
OSTI Identifier:
20853935
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 34; Journal Issue: 1; Other Information: DOI: 10.1118/1.2401054; (c) 2007 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCURACY; ANISOTROPY; COLLIMATORS; DOSIMETRY; INTEGRAL DOSES; MONTE CARLO METHOD; PHANTOMS; PHOTONS; POLYSTYRENE; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; SKULL; VERIFICATION