skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Automatic estimation of detector radial position for contoured SPECT acquisition using CT images on a SPECT/CT system

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.2219770· OSTI ID:20853380
;  [1]
  1. Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77230 (United States)

An algorithm was developed to estimate noncircular orbit (NCO) single-photon emission computed tomography (SPECT) detector radius on a SPECT/CT imaging system using the CT images, for incorporation into collimator resolution modeling for iterative SPECT reconstruction. Simulated male abdominal (arms up), male head and neck (arms down) and female chest (arms down) anthropomorphic phantom, and ten patient, medium-energy SPECT/CT scans were acquired on a hybrid imaging system. The algorithm simulated inward SPECT detector radial motion and object contour detection at each projection angle, employing the calculated average CT image and a fixed Hounsfield unit (HU) threshold. Calculated radii were compared to the observed true radii, and optimal CT threshold values, corresponding to patient bed and clothing surfaces, were found to be between -970 and -950 HU. The algorithm was constrained by the 45 cm CT field-of-view (FOV), which limited the detected radii to {<=}22.5 cm and led to occasional radius underestimation in the case of object truncation by CT. Two methods incorporating the algorithm were implemented: physical model (PM) and best fit (BF). The PM method computed an offset that produced maximum overlap of calculated and true radii for the phantom scans, and applied that offset as a calculated-to-true radius transformation. For the BF method, the calculated-to-true radius transformation was based upon a linear regression between calculated and true radii. For the PM method, a fixed offset of +2.75 cm provided maximum calculated-to-true radius overlap for the phantom study, which accounted for the camera system's object contour detect sensor surface-to-detector face distance. For the BF method, a linear regression of true versus calculated radius from a reference patient scan was used as a calculated-to-true radius transform. Both methods were applied to ten patient scans. For -970 and -950 HU thresholds, the combined overall average root-mean-square (rms) error in radial position for eight patient scans without truncation were 3.37 cm (12.9%) for PM and 1.99 cm (8.6%) for BF, indicating BF is superior to PM in the absence of truncation. For two patient scans with truncation, the rms error was 3.24 cm (12.2%) for PM and 4.10 cm (18.2%) for BF. The slightly better performance of PM in the case of truncation is anomalous, due to FOV edge truncation artifacts in the CT reconstruction, and thus is suspect. The calculated NCO contour for a patient SPECT/CT scan was used with an iterative reconstruction algorithm that incorporated compensation for system resolution. The resulting image was qualitatively superior to the image obtained by reconstructing the data using the fixed radius stored by the scanner. The result was also superior to the image reconstructed using the iterative algorithm provided with the system, which does not incorporate resolution modeling. These results suggest that, under conditions of no or only mild lateral truncation of the CT scan, the algorithm is capable of providing radius estimates suitable for iterative SPECT reconstruction collimator geometric resolution modeling.

OSTI ID:
20853380
Journal Information:
Medical Physics, Vol. 33, Issue 8; Other Information: DOI: 10.1118/1.2219770; (c) 2006 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English