skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fuel Design and Core Layout for a Gas-Cooled Fast Reactor

Journal Article · · Nuclear Technology
OSTI ID:20840296

The gas-cooled fast reactor (GCFR) is regarded as the primary candidate for a future sustainable nuclear power system. In this paper a general core layout is presented for a 2400-MW(thermal) GCFR. Two fuel elements are discussed: a TRISO-based coated particle and the innovative hollow sphere concept. Sustainability calls for recycling of all minor actinides (MAs) in the core and a breeding gain close to unity. A fuel cycle is designed allowing operation over a long period, requiring refueling with {sup 238}U only. The evolution of nuclides in the GCFR core is calculated using the SCALE system (one-dimensional and three-dimensional). Calculations were done over multiple irradiation cycles including reprocessing. The result is that it is possible to design a fuel and GCFR core with a breeding gain around unity, with recycling of all MAs from cycle to cycle. The burnup reactivity swing is small, improving safety. After several fuel batches an equilibrium core is reached. MA loading in the core remains limited, and the fuel temperature coefficient is always negative.

OSTI ID:
20840296
Journal Information:
Nuclear Technology, Vol. 151, Issue 3; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, All rights reserved. http://epubs.ans.org/; Country of input: International Atomic Energy Agency (IAEA); ISSN 0029-5450
Country of Publication:
United States
Language:
English