skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of TRAC/BF1-ENTREE-NASCA to OECD NEA/NSC BWR Turbine Trip Benchmark

Journal Article · · Nuclear Science and Engineering
OSTI ID:20808385

A coupled plant simulation system TRAC/BF1-ENTREE was applied to the Nuclear Energy Agency/National Security Council boiling water reactor turbine trip benchmark. Through regular exercise 3 and extreme scenarios 3 and 4, its adequacy and robustness were validated. It was deduced that the cross-section format and the core boundary conditions are major influential factors causing errors in three-dimensional power predictions. Power swings observed in extreme scenarios were attributed to intermittent void generation and void sweeping driven by rapid pressurization. Based on a series of sensitivity studies for extreme scenario 4, it was confirmed that neglect of in-channel direct heating causes a large positive reactivity insertion and neglect of bypass direct heating causes only a small change in reactivity effects. Specifying an integration time-step size of <1 ms is recommended for keeping the numerical error within an acceptable level. To investigate the detailed in-channel void distribution and its possible influences on the fuel thermal margin, a one-way coupled system between TRAC/BF1-ENTREE and the three-field subchannel code NASCA was developed. Detailed void distributions at the upper part of the core where the boiling transition will occur become sufficiently uniform during the major period of the turbine trip event. Their influences on the thermal margin seem negligible.

OSTI ID:
20808385
Journal Information:
Nuclear Science and Engineering, Vol. 148, Issue 2; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, All rights reserved. http://epubs.ans.org/; Country of input: International Atomic Energy Agency (IAEA); ISSN 0029-5639
Country of Publication:
United States
Language:
English