skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of core and edge turbulence in L- and enhanced D{sub {alpha}} H-mode Alcator C-Mod plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.1899161· OSTI ID:20722085

The recently upgraded phase-contrast imaging (PCI) diagnostic is used to characterize the transition from the low (L) to the enhanced D{sub {alpha}} (EDA) high (H) confinement mode in Alcator C-Mod [I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511 (1994)] plasmas. PCI yields information on line integrated density fluctuations along vertical chords. The number of channels has been increased from 12 to 32 and the sampling rate from 1 MHz to 10 MHz. This expansion of diagnostic capabilities is used to study broadband turbulence in L and EDA H mode and to analyze the quasicoherent (QC) mode associated with EDA H mode. Changes in broadband turbulence at the transition from L to EDA H mode can be interpreted as an effect of the Doppler rotation of the bulk plasma. Additional fluctuation measurements of D{sub {alpha}} light and the poloidal magnetic field show features correlated with PCI in two different frequency ranges at the transition. The backtransition from EDA H to L mode, the so-called enhanced neutron (EN) mode, is investigated by new high frequency (132 and 140 GHz) reflectometer channels operating in the ordinary (O) mode. This additional hardware has been installed in an effort to study localized turbulence associated with internal transport barriers (ITBs). The EN mode is a suitable candidate for this study, since an ITB exists transiently as the outer density decreases much faster than the core density in this mode. The fact that the density decays from the outside inward allows us to study fluctuations progressing towards the plasma core. Our results mark the first localized observation of the QC mode at medium density: 2.2x10{sup 20} m{sup -3} (132 GHz). Correlating the reflectometry measurements with other fluctuating quantities provides some insight regarding the causality of the EN-mode development.

OSTI ID:
20722085
Journal Information:
Physics of Plasmas, Vol. 12, Issue 5; Other Information: DOI: 10.1063/1.1899161; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English