skip to main content

Title: Nuclear Space Power Systems Materials Requirements

High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.
Authors:
 [1]
  1. REFRACTORY METALS TECHNOLOGY, P. O. Box 10055, Pittsburgh, PA 15236 (United States)
Publication Date:
OSTI Identifier:
20632890
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 699; Journal Issue: 1; Conference: STAIF 2004: 21. symposium on space nuclear power and propulsion: Human space exploration, space colonization, new frontiers and future concepts, Albuquerque, NM (United States), 8-11 Feb 2004; Other Information: DOI: 10.1063/1.1649646; (c) 2004 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; HEAT RESISTING ALLOYS; MOLYBDENUM; NIOBIUM; REACTOR MATERIALS; REVIEWS; SPACE POWER REACTORS; TANTALUM; TEMPERATURE RANGE 0400-1000 K; TUNGSTEN NESDPS Office of Nuclear Energy Space and Defense Power Systems