skip to main content

Title: Antiproton Powered Gas Core Fission Rocket

Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amumore » and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.« less
Authors:
 [1]
  1. Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States)
Publication Date:
OSTI Identifier:
20630582
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 746; Journal Issue: 1; Conference: STAIF 2005: Conference on thermophysics in microgravity; Conference on commercial/civil next generation space transportation; 22. symposium on space nuclear power and propulsion; Conference on human/robotic technology and the national vision for space exploration; 3. symposium on space colonization; 2. symposium on new frontiers and future concepts, Albuquerque, NM (United States), 13-17 Feb 2005; Other Information: DOI: 10.1063/1.1867173; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ANNIHILATION; ANTIPROTON BEAMS; ANTIPROTONS; FISSION; FISSION FRAGMENTS; ION-ION COLLISIONS; MAGNETIC FIELDS; MAGNETIC MIRRORS; MEAN FREE PATH; MEV RANGE; MUONS; PIONS; PLASMA; PLASMA CONFINEMENT; PROPULSION SYSTEMS; PROTON BEAMS; ROCKETS; SPACE VEHICLES; URANIUM; URANIUM 238