skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A thermoacoustic-Stirling heat engine: Detailed study

Journal Article · · Journal of the Acoustical Society of America
DOI:https://doi.org/10.1121/1.429343· OSTI ID:20216523
 [1];  [1]
  1. Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood. (c) 2000 Acoustical Society of America.

OSTI ID:
20216523
Journal Information:
Journal of the Acoustical Society of America, Vol. 107, Issue 6; Other Information: PBD: Jun 2000; ISSN 0001-4966
Country of Publication:
United States
Language:
English

Similar Records

Liquid metal thermoacoustic engine
Conference · Wed Jan 01 00:00:00 EST 1986 · OSTI ID:20216523

Fundamental studies of radial wave thermoacoustic engines. Final report, 1 October 1993-14 September 1996
Technical Report · Sun Sep 01 00:00:00 EDT 1996 · OSTI ID:20216523

Intrinsically irreversible thermoacoustic heat engine
Journal Article · Fri Jul 01 00:00:00 EDT 1983 · J. Acoust. Soc. Am.; (United States) · OSTI ID:20216523